
Project 1: Trump, Twitter, and Text ¶
Welcome to the first project of Data 100! In this project, we will work with the Twitter API in order to
analyze Donald Trump's tweets.

The project is due 11:59pm Tuesday, Feb 27, California Time.

Fair warning: This project involves significantly more challenging pandas operations than the
previous homeworks. We strongly suggest you start early.

Fun:

We intended this project to be fun! You will analyze actual data from the Twitter API. You will also
draw conclusions about the current (and often controversial) US President's tweet behavior. If you
find yourself getting frustrated or stuck on one problem for too long, we suggest coming into office
hours and working with friends in the class.

If you find yourself getting frustrated with the data we suggest you vote and/or encourage others to
vote.

With that in mind, let's get started!

In [2]:

Downloading Recent Tweets

Since we'll be looking at Twitter data, we need to download the data from Twitter!

Twitter provides an API for downloading tweet data in large batches. The tweepy package makes
it fairly easy to use.

Run this cell to set up your notebook
import csv
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import zipfile
​
Ensure that Pandas shows at least 280 characters in columns, so we can se
pd.set_option('max_colwidth', 280)
​
%matplotlib inline
plt.style.use('fivethirtyeight')
import seaborn as sns
sns.set()
sns.set_context("talk")
import re

In [3]:

There are instructions on using tweepy here
(http://tweepy.readthedocs.io/en/v3.5.0/getting_started.html), but we will give you example code.

Twitter requires you to have authentication keys to access their API. To get your keys, you'll have to
sign up as a Twitter developer. The next question will walk you through this process.

Question 1
Follow the instructions below to get your Twitter API keys. Read the instructions completely
before starting.

1. Create a Twitter account (https://twitter.com). You can use an existing account if you have one;
if you prefer to not do this assignment under your regular account, feel free to create a throw-
away account.

2. Under account settings, add your phone number to the account.
3. Create a Twitter developer account (https://dev.twitter.com/resources/signup). Attach it to your

Twitter account.
4. Once you're logged into your developer account, create an application for this assignment

(https://apps.twitter.com/app/new). You can call it whatever you want, and you can write any
URL when it asks for a web site. You don't need to provide a callback URL.

5. On the page for that application, find your Consumer Key and Consumer Secret.
6. On the same page, create an Access Token. Record the resulting Access Token and Access

Token Secret.
7. Edit the file keys.json (keys.json) and replace the placeholders with your keys.

WARNING (Please Read) !!!!

Protect your Twitter Keys
If someone has your authentication keys, they can access your Twitter account and post as you! So
don't give them to anyone, and **don't write them down in this notebook**. The usual way to store
sensitive information like this is to put it in a separate file and read it programmatically. That way,
you can share the rest of your code without sharing your keys. That's why we're asking you to put
your keys in `keys.json` for this assignment.

Avoid making too many API calls.
Twitter limits developers to a certain rate of requests for data. If you make too many requests in a
short period of time, you'll have to wait awhile (around 15 minutes) before you can make more. So
carefully follow the code examples you see and don't rerun cells without thinking. Instead, always
save the data you've collected to a file. We've provided templates to help you do that.

Be careful about which functions you call!

Make sure you are in your data100 conda environment if you are working l
The following should run:
import tweepy

http://tweepy.readthedocs.io/en/v3.5.0/getting_started.html
https://twitter.com/
https://dev.twitter.com/resources/signup
https://apps.twitter.com/app/new
http://localhost:8888/notebooks/college/data100/afaskowitz/proj1/keys.json

This API can retweet tweets, follow and unfollow people, and modify your twitter settings. Be
careful which functions you invoke! One of your instructors accidentally re-tweeted some tweets
because that instructor typed `retweet` instead of `retweet_count`.

In [4]:

This cell tests the Twitter authentication. It should run without errors or warnings and display your
Twitter username.

In [5]:

Question 2
In the example below, we have loaded some tweets by @BerkeleyData. Run it and read the code.

Your username is: fasky_based

import json
key_file = 'keys.json'
Loading your keys from keys.json (which you should have filled
in in question 1):
with open(key_file) as f:
 keys = json.load(f)
if you print or view the contents of keys be sure to delete the cell!

import tweepy
from tweepy import TweepError
import logging
​
try:
 auth = tweepy.OAuthHandler(keys["consumer_key"], keys["consumer_secret"
 auth.set_access_token(keys["access_token"], keys["access_token_secret"]
 api = tweepy.API(auth)
 print("Your username is:", api.auth.get_username())
except TweepError as e:
 logging.warning("There was a Tweepy error. Double check your API keys a
 logging.warning(e)

In [6]:

Assuming everything ran correctly you should be able to look at the first tweet by running the cell
below.
Warning Do not attempt to view all the tweets in a notebook. It will likely freeze your browser.
The following would be a **bad idea**:
```python
pprint(example_tweets)
```

In [7]:

Question 2a

{'contributors': None,

 'coordinates': None,

 'created_at': 'Fri Feb 23 21:04:44 +0000 2018',

 'display_text_range': [0, 139],

 'entities': {'hashtags': [],

 'symbols': [],

 'urls': [],

 'user_mentions': [{'id': 921139702996127744,

 'id_str': '921139702996127744',

 'indices': [3, 17],

 'name': 'cybersecurity@berkeley',

 'screen_name': 'BerkeleyCyber'},

 {'id': 176932593,

 'id_str': '176932593',

 'indices': [79, 90],

 'name': 'UC Berkeley',

 'screen_name': 'UCBerkeley'}]},

 'favorite_count': 0,

 'favorited': False,

'f ll t t' 'RT @B k l C b b it @b k l b i th

from pathlib import Path
import json
​
ds_tweets_save_path = "BerkeleyData_recent_tweets.json"
Guarding against attempts to download the data multiple
times:
if not Path(ds_tweets_save_path).is_file():
 # Getting as many recent tweets by @BerkeleyData as Twitter will let us
 # We use tweet_mode='extended' so that Twitter gives us full 280 charac
 # This was a change introduced in September 2017.

 # The tweepy Cursor API actually returns "sophisticated" Status objects
 # will use the basic Python dictionaries stored in the _json field.
 example_tweets = [t._json for t in tweepy.Cursor(api.user_timeline, id=
 tweet_mode='extended').items()

 # Saving the tweets to a json file on disk for future analysis
 with open(ds_tweets_save_path, "w") as f:
 json.dump(example_tweets, f)
​
Re-loading the json file:
with open(ds_tweets_save_path, "r") as f:
 example_tweets = json.load(f)

Looking at one tweet object, which has type Status:
from pprint import pprint # ...to get a more easily-readable view.
pprint(example_tweets[0])

Question 2a
What you need to do.
Re-factor the above code fragment into reusable snippets below. You should not need to make
major modifications; this is mostly an exercise in understanding the above code block.

In [8]:

In [9]:

def load_keys(path):
 """Loads your Twitter authentication keys from a file on disk.

 Args:
 path (str): The path to your key file. The file should
 be in JSON format and look like this (but filled in):
 {
 "consumer_key": "<your Consumer Key here>",
 "consumer_secret": "<your Consumer Secret here>",
 "access_token": "<your Access Token here>",
 "access_token_secret": "<your Access Token Secret here>"
 }

 Returns:
 dict: A dictionary mapping key names (like "consumer_key") to
 key values."""
 key_file = path
 with open(key_file) as a:
 keys = json.load(a)
 return keys

def download_recent_tweets_by_user(user_account_name, keys):
 """Downloads tweets by one Twitter user.
​
 Args:
 user_account_name (str): The name of the Twitter account
 whose tweets will be downloaded.
 keys (dict): A Python dictionary with Twitter authentication
 keys (strings), like this (but filled in):
 {
 "consumer_key": "<your Consumer Key here>",
 "consumer_secret": "<your Consumer Secret here>",
 "access_token": "<your Access Token here>",
 "access_token_secret": "<your Access Token Secret here>"
 }
​
 Returns:
 list: A list of Dictonary objects, each representing one tweet."""
 import tweepy
 tweets = [t._json for t in tweepy.Cursor(api.user_timeline, id=user_acc
 tweet_mode='extended').items()
 return tweets

In [10]:

In [11]:

def save_tweets(tweets, path):
 """Saves a list of tweets to a file in the local filesystem.

 This function makes no guarantee about the format of the saved
 tweets, **except** that calling load_tweets(path) after
 save_tweets(tweets, path) will produce the same list of tweets
 and that only the file at the given path is used to store the
 tweets. (That means you can implement this function however
 you want, as long as saving and loading works!)
​
 Args:
 tweets (list): A list of tweet objects (of type Dictionary) to
 be saved.
 path (str): The place where the tweets will be saved.
​
 Returns:
 None"""

 if not Path(path).is_file():
 with open(path, "w") as a:
 json.dump(tweets, a)

def load_tweets(path):
 """Loads tweets that have previously been saved.

 Calling load_tweets(path) after save_tweets(tweets, path)
 will produce the same list of tweets.

 Args:
 path (str): The place where the tweets were be saved.
​
 Returns:
 list: A list of Dictionary objects, each representing one tweet."""
 with open(path, "r") as a:
 tweets = json.load(a)
 return tweets

In [12]:

If everything was implemented correctly you should be able to obtain roughly the last 3000 tweets
by the realdonaldtrump . (This may take a few minutes)

In [13]:

In [14]:

Question 2b
We are limited to how many tweets we can download. In what month is the oldest tweet from
Trump?

Number of tweets downloaded: 3227

def get_tweets_with_cache(user_account_name, keys_path):
 """Get recent tweets from one user, loading from a disk cache if availa

 The first time you call this function, it will download tweets by
 a user. Subsequent calls will not re-download the tweets; instead
 they'll load the tweets from a save file in your local filesystem.
 All this is done using the functions you defined in the previous cell.
 This has benefits and drawbacks that often appear when you cache data:

 +: Using this function will prevent extraneous usage of the Twitter API
 +: You will get your data much faster after the first time it's called.
 -: If you really want to re-download the tweets (say, to get newer ones
 or because you screwed up something in the previous cell and your
 tweets aren't what you wanted), you'll have to find the save file
 (which will look like <something>_recent_tweets.pkl) and delete it.

 Args:
 user_account_name (str): The Twitter handle of a user, without the
 keys_path (str): The path to a JSON keys file in your filesystem.
 """
 keys = load_keys(keys_path)
 recent_tweets = download_recent_tweets_by_user(user_account_name, keys)
 save_tweets(recent_tweets, "new_user.json")
 load_tweets(keys_path)
 return recent_tweets

When you are done, run this cell to load @realdonaldtrump's tweets.
Note the function get_tweets_with_cache. You may find it useful
later.
trump_tweets = get_tweets_with_cache("realdonaldtrump", key_file)
print("Number of tweets downloaded:", len(trump_tweets))

assert 2000 <= len(trump_tweets) <= 4000

In [15]:

In []:

Question 3
IMPORTANT! PLEASE READ

Unfortunately, Twitter prevent us from going further back in time using the public APIs. Fortunately,
we have a snapshot of earlier tweets that we can combine with our new data.

We will again use the fetch_and_cache utility to download the dataset.

In [16]:

Finally, we we will load the tweets directly from the compressed file without decompressing it first.

In [17]:

This data is formatted identically to the recent tweets we just downloaded:

Out[15]: 9

Using version already downloaded: Mon Feb 26 22:45:47 2018

MD5 hash of file: d9419cad17e76c87fe646b587f6e8ca5

Located at data/old_trump_tweets.json.zip

Enter the number of the month of the oldest tweet (e.g. 1 for January)
import time
​
oldest = trump_tweets[0].get("created_at")
for tweet in np.arange(len(trump_tweets)):
 date = trump_tweets[tweet].get("created_at")
 time.strptime(date, "%a %b %d %X %z %Y")
 oldest = max(oldest, date)
oldest_month = time.strptime(oldest, "%a %b %d %X %z %Y").tm_mon
oldest_month

​

Download the dataset
from utils import fetch_and_cache
data_url = 'http://www.ds100.org/sp18/assets/datasets/old_trump_tweets.json
file_name = 'old_trump_tweets.json.zip'
​
dest_path = fetch_and_cache(data_url=data_url, file=file_name)
print(f'Located at {dest_path}')

my_zip = zipfile.ZipFile(dest_path, 'r')
with my_zip.open("old_trump_tweets.json", "r") as f:
 old_trump_tweets = json.load(f)

In [18]:

As a dictionary we can also list the keys:

In [19]:

In [20]:

Question 3a
Merge the old_trump_tweets and the trump_tweets we downloaded from twitter into one
giant list of tweets.

Important: There may be some overlap so be sure to eliminate duplicate tweets.

Hint: the id of a tweet is always unique.

{'contributors': None,

 'coordinates': None,

 'created_at': 'Wed Oct 12 14:00:48 +0000 2016',

 'entities': {'hashtags': [{'indices': [23, 38], 'text': 'CrookedHillar
y'}],

 'media': [{'display_url': 'pic.twitter.com/wjsl8ITVvk',

 'expanded_url': 'https://twitter.com/realDonaldT
rump/status/786204978629185536/video/1',

 'id': 786204885318561792,

 'id_str': '786204885318561792',

 'indices': [39, 62],

 'media_url': 'http://pbs.twimg.com/ext_tw_video_
thumb/786204885318561792/pu/img/XqMoixLm83FzkAbn.jpg',
 'media_url_https': 'https://pbs.twimg.com/ext_tw
_video_thumb/786204885318561792/pu/img/XqMoixLm83FzkAbn.jpg',

 'sizes': {'large': {'h': 576,
 'resize': 'fit',

 'w': 1024},

 'medium': {'h': 338,

' i ' 'fit'

Out[19]: dict_keys(['created_at', 'id', 'id_str', 'text', 'truncated', 'entities',
'extended_entities', 'source', 'in_reply_to_status_id', 'in_reply_to_stat
us_id_str', 'in_reply_to_user_id', 'in_reply_to_user_id_str', 'in_reply_t
o_screen_name', 'user', 'geo', 'coordinates', 'place', 'contributors', 'i
s_quote_status', 'retweet_count', 'favorite_count', 'favorited', 'retweet
ed', 'possibly_sensitive', 'lang'])

Out[20]: dict_keys(['created_at', 'id', 'id_str', 'full_text', 'truncated', 'displ
ay_text_range', 'entities', 'source', 'in_reply_to_status_id', 'in_reply_
to_status_id_str', 'in_reply_to_user_id', 'in_reply_to_user_id_str', 'in_
reply_to_screen_name', 'user', 'geo', 'coordinates', 'place', 'contributo
rs', 'is_quote_status', 'retweet_count', 'favorite_count', 'favorited',
'retweeted', 'lang'])

pprint(old_trump_tweets[0])

old_trump_tweets[0].keys()

trump_tweets[0].keys()

In [21]:

In [22]:

Question 3b
Construct a DataFrame called trump containing all the tweets stored in all_tweets . The
index of the dataframe should be the ID of each tweet (looks something like
907698529606541312). It should have these columns:

time : The time the tweet was created encoded as a datetime object. (Use
pd.to_datetime to encode the timestamp.)
source : The source device of the tweet.
text : The text of the tweet.
retweet_count : The retweet count of the tweet.

Finally, the resulting dataframe should be sorted by the index.

Warning: Some tweets will store the text in the text field and other will use the full_text
field.

Out[21]: 6802

tweeter_dict = {}
for tweet in trump_tweets:
 if tweet["id"] not in tweeter_dict.keys():
 tweeter_dict[tweet["id"]] = tweet
for tweet in old_trump_tweets:
 if tweet["id"] not in tweeter_dict.keys():
 tweeter_dict[tweet["id"]] = tweet
​
all_tweets = [tweeter_dict[tweet_key] for tweet_key in tweeter_dict.keys()]
len(all_tweets)

assert len(all_tweets) > len(trump_tweets)
assert len(all_tweets) > len(old_trump_tweets)

In [23]:

In [24]:

Question 4: Tweet Source Analysis

Out[23]:
time source retweet_count

968621347294318592
2018-
02-27

22:58:19

<a
href="http://twitter.com/download/iphone"

rel="nofollow">Twitter for iPhone
6298

.@SenatorWicke
supporter a

massive Tax Cut
help on cut

968620661349470209
2018-
02-27

22:55:36

<a
href="http://twitter.com/download/iphone"

rel="nofollow">Twitter for iPhone
8206

Texas LC Ge
wasn’t the po

back him now. A
me from the

Texas.” Also s
and Railroad

968550893015707649
2018-
02-27

18:18:22

<a
href="http://twitter.com/download/iphone"

rel="nofollow">Twitter for iPhone
9458

“American co
they've been sin

boosting confide

2018
I want to encour
to vote in the pr

 #creating the intial data for the dataframe without text
datum = [[tweet_dict["created_at"], tweet_dict["source"],
 tweet_dict["retweet_count"]] for tweet_dict in all_tweets]
​
#creating the list of indexes
dex = [tweet_dict["id"] for tweet_dict in all_tweets]
​
#putting together a dataframe
trump = pd.DataFrame(data=datum, index=dex, columns=["time", "source", "ret
​
#changing the time to be correctly formatted
trump["time"] = [pd.to_datetime(i) for i in trump["time"]]
​
#creating a comprehensive list of full_text and text
all_text = [tweet_dict["full_text"] if "full_text" in tweet_dict else tweet
​
trump["text"] = all_text
​
trump

assert isinstance(trump, pd.DataFrame)
assert trump.shape[0] < 8000
assert trump.shape[1] >= 4
assert 831846101179314177 in trump.index
assert 753063644578144260 in trump.index
assert all(col in trump.columns for col in ['time', 'source', 'text', 'retw
If you fail these tests, you probably tried to use __dict__ or _json to r
assert np.sometrue([('Twitter for iPhone' in s) for s in trump['source'].un
assert trump['time'].dtype == np.dtype('<M8[ns]')
assert trump['text'].dtype == np.dtype('O')
assert trump['retweet_count'].dtype == np.dtype('int64')

In the following questions, we are going to find out the charateristics of Trump tweets and the
devices used for the tweets.

First let's examine the source field:

In [25]:

Question 4a
Remove the HTML tags from the source field.

Hint: Use trump['source'].str.replace and your favorite regular expression.

Out[25]: array(['Twit
ter for iPhone',

 'Media Studio
',

 'Twit
ter for iPad',

 'Twitter Web Client',

 'Twitter Ads',

 'Twit
ter for Android',

 'Periscope',

 'Instagram',

 'Mobile Web (M
5)'], dtype=object)

trump['source'].unique()

In [26]:

Out[26]: 968621347294318592 Twitter for iPhone

968620661349470209 Twitter for iPhone

968550893015707649 Twitter for iPhone

968549117625602054 Twitter for iPhone

968468176639004672 Twitter for iPhone

968467243192537088 Twitter for iPhone

968462966864609280 Twitter for iPhone

968455547094753281 Twitter for iPhone

967847560248426498 Twitter for iPhone

967609114238050304 Twitter for iPhone

967597887545896961 Twitter for iPhone

967597639293382657 Twitter for iPhone

967564998238142471 Twitter for iPhone

967563946063523840 Twitter for iPhone

967545724362739712 Twitter for iPhone

967539664692350977 Twitter for iPhone

967538684789739520 Twitter for iPhone

967526110249537542 Twitter for iPhone

967508938425069568 Twitter for iPhone

967506350283599874 Twitter for iPhone

967493467046899712 Twitter for iPhone

967472757025001472 Twitter for iPhone

967389553362423808 Twitter for iPhone

967388904952344577 Twitter for iPhone

967168890232082433 Twitter for iPhone

967146956094083073 Twitter for iPhone

967084806726127616 Twitter for iPhone

967083810981597185 Twitter for iPhone

967083281974951939 Twitter for iPhone

967023714268319744 Twitter for iPhone

 ...

787425145489072128 Twitter for Android

787359730465329152 Twitter for Android

787355131062943744 Twitter for iPhone

787320961934688257 Twitter for iPhone

787320326573228032 Twitter for iPhone

787319977711923200 Twitter for iPhone

787267564405653505 Twitter for Android

787266044213723138 Twitter for iPhone

787258211283918848 Twitter for Android

787244543003467776 Twitter for Android

787127225581707265 Twitter for iPhone

787099202291634177 Twitter for iPhone

787025537483046913 Twitter Web Client

787012170630455297 Twitter for iPhone

786950598826532864 Twitter for iPhone

786737820669009921 Twitter for iPhone

786716631644897280 Twitter for iPhone

786710113163812864 Twitter for iPhone

786709861245526017 Twitter for iPhone

786700864752914433 Twitter for iPhone

786691718062235649 Twitter for iPhone

786658827429154816 Twitter for iPhone

Uncomment and complete
trump['source'] = trump['source'].str.replace(r'<[^>]+>', '')
trump['source']

In [27]:

We can see in the following plot that there are two device types that are more commonly used

In [28]:

Question 4b
Is there a difference between his Tweet behavior across these devices? We will attempt to answer
this question in our subsequent analysis.

786589454991499264 Twitter for iPhone

786589172911964161 Twitter for iPhone

786565208663785476 Twitter for iPhone

786560925113266176 Twitter Web Client

786554517680693248 Twitter for Android

786340623804751872 Twitter for iPhone

786310855843512320 Twitter for iPad

786285509668696065 Twitter for iPhone

Name: source, Length: 6802, dtype: object

Out[28]: Text(0,0.5,'Number of Tweets')

from datetime import datetime
ELEC_DATE = datetime(2016, 11, 8)
INAUG_DATE = datetime(2017, 1, 20)
assert set(trump[(trump['time'] > ELEC_DATE) & (trump['time'] < INAUG_DATE)
 'Twitter Web Client',
 'Twitter for Android',
 'Twitter for iPhone'])

trump['source'].value_counts().plot(kind="bar")
plt.ylabel("Number of Tweets")

First, we'll take a look at whether Trump's tweets from an Android come at different times than his
tweets from an iPhone. Note that Twitter gives us his tweets in the UTC timezone
(https://www.wikiwand.com/en/List_of_UTC_time_offsets) (notice the +0000 in the first few
tweets)

In [29]:

We'll convert the tweet times to US Eastern Time, the timezone of New York and Washington D.C.,
since those are the places we would expect the most tweet activity from Trump.

Tue Feb 27 22:58:19 +0000 2018

Tue Feb 27 22:55:36 +0000 2018

Tue Feb 27 18:18:22 +0000 2018

for t in trump_tweets[0:3]:
 print(t['created_at'])

https://www.wikiwand.com/en/List_of_UTC_time_offsets

In [30]:

What you need to do:

Add a column called hour to the trump table which contains the hour of the day as floating
point number computed by:

hour + +
minute

60

second

60
2

Out[30]:
time source retweet_count text est_time

968621347294318592
2018-
02-27

22:58:19

Twitter
for

iPhone
6298

.@SenatorWicker of Mississippi has
been a great supporter and incredible

help in getting our massive Tax Cut
Bill done and approved. Also big help

on cutting regs. I am with him in his
re-election all the way!

2018-02-
27

17:58:19-
05:00

968620661349470209
2018-
02-27

22:55:36

Twitter
for

iPhone
8206

Texas LC George P. Bush backed me
when it wasn’t the politically correct

thing to do, and I back him now.
Also, AC Sid Miller has been with me

from the beginning, he is “Trump’s
Man in Texas.” Also support

Comptroller Glenn Hegar, and
Railroad Commissioner Christi

Craddick.

2018-02-
27

17:55:36-
05:00

968550893015707649
2018-
02-27

18:18:22

Twitter
for

iPhone
9458

“American consumers are the most
confident they've been since

2000....A strong job market is
boosting confidence. The

unemployment rate has stayed at a
17-year low.”

https://t.co/aL7aVoR7XC

2018-02-
27

13:18:22-
05:00

968549117625602054
2018-
02-27

18:11:19

Twitter
for

iPhone
19528

I want to encourage all of my many
Texas friends to vote in the primary
for Governor Greg Abbott, Senator
Ted Cruz, Lt. Gov. Dan Patrick, and
Attorney General Ken Paxton. They

are helping me to Make America
Great Again! Vote early or on March

6th.

2018-02-
27

13:11:19-
05:00

968468176639004672
2018-
02-27

12:49:41

Twitter
for

iPhone
20274 WITCH HUNT!

2018-02-
27

07:49:41-
05:00

trump['est_time'] = (
 trump['time'].dt.tz_localize("UTC") # Set initial timezone to UTC
 .dt.tz_convert("EST") # Convert to Eastern Time
)
trump.head()

In [31]:

Out[31]: 968621347294318592 17.971944

968620661349470209 17.926667

968550893015707649 13.306111

968549117625602054 13.188611

968468176639004672 7.828056

968467243192537088 7.766111

968462966864609280 7.483056

968455547094753281 6.991667

967847560248426498 14.726111

967609114238050304 22.934444

967597887545896961 22.191111

967597639293382657 22.174444

967564998238142471 20.012778

967563946063523840 19.943056

967545724362739712 18.736389

967539664692350977 18.335000

967538684789739520 18.270278

967526110249537542 17.437500

967508938425069568 16.300278

967506350283599874 16.128611

967493467046899712 15.275556

967472757025001472 13.903889

967389553362423808 8.393611

967388904952344577 8.350556

967168890232082433 17.779722

967146956094083073 16.326944

967084806726127616 12.211111

967083810981597185 12.145000

967083281974951939 12.110000

967023714268319744 8.165000

 ...

787425145489072128 17.821667

787359730465329152 13.489444

787355131062943744 13.185000

787320961934688257 10.921944

787320326573228032 10.880000

787319977711923200 10.856944

787267564405653505 7.385556

787266044213723138 7.285000

787258211283918848 6.766111

787244543003467776 5.861111

787127225581707265 22.091389

787099202291634177 20.235556

787025537483046913 15.356944

787012170630455297 14.471667

786950598826532864 10.393889

786737820669009921 20.301944

786716631644897280 18.898889

786710113163812864 18.467222

786709861245526017 18.450278

786700864752914433 17.854722

786691718062235649 17.248889

786658827429154816 15.070556

time = trump['est_time']
trump['hour'] = time.dt.hour + (1/60) * time.dt.minute + (1/60**2) * time.d
trump['hour']

In [32]:

Question 4c
Use this data along with the seaborn distplot function to examine the distribution over hours of
the day in easter time that trump tweets on each device for the 2 most commonly used
devices. Your plot should look similar to the following.

786589454991499264 10.476111

786589172911964161 10.457500

786565208663785476 8.870556

786560925113266176 8.586667

786554517680693248 8.162500

786340623804751872 17.996667

786310855843512320 16.025278

786285509668696065 14.346667

Name: hour, Length: 6802, dtype: float64

assert np.isclose(trump.loc[690171032150237184]['hour'], 8.93639)

In [33]:

Question 4d
Are there any striking differences between these curves. If someone told you that Trump tends to
tweet early in the morning and then later in the evening, which device might you conclude is most
likely his?

The tweets coming from the iPhone are more dispersed throughout the day, whereas the Android
tweets are much more concentrated in the morning and evening. One could conclude that Trump
uses an Android.

Question 5

Out[33]: <matplotlib.legend.Legend at 0x7fefe9e1bf60>

iphone = trump[trump["source"] == "Twitter for iPhone"]["hour"]
android = trump[trump["source"] == "Twitter for Android"]["hour"]
sns.distplot(iphone, hist=False, label="Twitter for iPhone")
sns.distplot(android, hist=False, label="Twitter for Android")
plt.ylabel("fraction")
plt.legend()

Let's now look at which device he has used over the entire time period of this dataset.

To examine the distribution of dates we will convert the date to a fractional year that can be plotted
as a distribution.

(Code borrowed from https://stackoverflow.com/questions/6451655/python-how-to-convert-
datetime-dates-to-decimal-years (https://stackoverflow.com/questions/6451655/python-how-to-
convert-datetime-dates-to-decimal-years))

In [34]:

Question 5a
Use the sns.distplot to overlay the distributions of the 2 most frequently used web
technologies over the years. Your final plot should look like:

import datetime
def year_fraction(date):
 start = datetime.date(date.year, 1, 1).toordinal()
 year_length = datetime.date(date.year+1, 1, 1).toordinal() - start
 return date.year + float(date.toordinal() - start) / year_length
​
​
trump['year'] = trump['time'].apply(year_fraction)

https://stackoverflow.com/questions/6451655/python-how-to-convert-datetime-dates-to-decimal-years

In [35]:

Question 5b
According to the plot, Trump's tweets come from many different sources. It turns out that many of
his tweets were not from Trump himself but from his staff. Take a look at this Verge article.
(https://www.theverge.com/2017/3/29/15103504/donald-trump-iphone-using-switched-android)

Does the data support the information in the article? What else do you find out about changes in
Trump's tweets sources from the plot?

This data does support the findings made in the article. Trump did change away from Android to
iPhone, and his tweets are coming from both him and his staffers now. Trump was initally very
active on his twitter (via Android) before he was sworn in as president. After he took office, that
number went down and staffers began tweeting for him much more.

Question 6: Sentiment Analysis

Out[35]: <matplotlib.legend.Legend at 0x7fefe9e04b38>

iphone = trump[trump["source"] == "Twitter for iPhone"]["year"]
android = trump[trump["source"] == "Twitter for Android"]["year"]
sns.distplot(iphone, label="Twitter for iPhone")
sns.distplot(android, label="Twitter for Android")
plt.ylabel("fraction")
plt.legend()

https://www.theverge.com/2017/3/29/15103504/donald-trump-iphone-using-switched-android

It turns out that we can use the words in Trump's tweets to calculate a measure of the sentiment of
the tweet. For example, the sentence "I love America!" has positive sentiment, whereas the
sentence "I hate taxes!" has a negative sentiment. In addition, some words have stronger positive /
negative sentiment than others: "I love America." is more positive than "I like America."

We will use the VADER (Valence Aware Dictionary and sEntiment Reasoner)
(https://github.com/cjhutto/vaderSentiment) lexicon to analyze the sentiment of Trump's tweets.
VADER is a lexicon and rule-based sentiment analysis tool that is specifically attuned to sentiments
expressed in social media which is great for our usage.

The VADER lexicon gives the sentiment of individual words. Run the following cell to show the first
few rows of the lexicon:

In [36]:

Question 6a
As you can see, the lexicon contains emojis too! The first column of the lexicon is the token, or the
word itself. The second column is the polarity of the word, or how positive / negative it is.

(How did they decide the polarities of these words? What are the other two columns in the lexicon?
See the link above.)

Read in the lexicon into a DataFrame called sent . The index of the DF should be the tokens in
the lexicon. sent should have one column: polarity : The polarity of each token.

$:	 -1.5	 0.80623	[-1, -1, -1, -1, -3, -1, -3, -1, -2, -1]

%)	 -0.4	 1.0198	 [-1, 0, -1, 0, 0, -2, -1, 2, -1, 0]
%-)	 -1.5	 1.43178	[-2, 0, -2, -2, -1, 2, -2, -3, -2, -3]

&-:	 -0.4	 1.42829	[-3, -1, 0, 0, -1, -1, -1, 2, -1, 2]

&:	 -0.7	 0.64031	[0, -1, -1, -1, 1, -1, -1, -1, -1, -1]

('}{')	 1.6	 0.66332	[1, 2, 2, 1, 1, 2, 2, 1, 3, 1]

(%	 -0.9	 0.9434	 [0, 0, 1, -1, -1, -1, -2, -2, -1, -2]

('-:	 2.2	 1.16619	[4, 1, 4, 3, 1, 2, 3, 1, 2, 1]
(':	 2.3	 0.9	 [1, 3, 3, 2, 2, 4, 2, 3, 1, 2]
((-:	 2.1	 0.53852	[2, 2, 2, 1, 2, 3, 2, 2, 3, 2]

print(''.join(open("vader_lexicon.txt").readlines()[:10]))

https://github.com/cjhutto/vaderSentiment

In [37]:

Out[37]:
polarity

token

$: -1.5

%) -0.4

%-) -1.5

&-: -0.4

&: -0.7

('}{') 1.6

(% -0.9

('-: 2.2

(': 2.3

((-: 2.1

(* 1.1

(-% -0.7

(-* 1.3

(-: 1.6

(-:0 2.8

(-:< -0.4

(-:o 1.5

(-:O 1.5

(-:{ -0.1

(-:|>* 1.9

(-; 1.3

(-;| 2.1

(8 2.6

(: 2.2

(:0 2.4

(:< -0.2

(:o 2.5

(:O 2.5

(; 1.1

(;< 0.3

sent = pd.read_table("vader_lexicon.txt", header=None, usecols=[0,1])
sent = sent.rename(columns={sent.columns[0]: "token", sent.columns[1]: "pol
sent = sent.set_index("token")
sent

polarity

token

... ...

xd 2.8

xp 1.6

yay 2.4

yeah 1.2

yearning 0.5

yeees 1.7

yep 1.2

yes 1.7

youthful 1.3

yucky -1.8

yummy 2.4

zealot -1.9

zealots -0.8

zealous 0.5

{: 1.8

|-0 -1.2

|-: -0.8

|-:> -1.6

|-o -1.2

|: -0.5

|;-) 2.2

|= -0.4

|^: -1.1

|o: -0.9

||-: -2.3

}: -2.1

}:(-2.0

}:) 0.4

}:-(-2.1

}:-) 0.3

7517 rows × 1 columns

In [38]:

Question 6b
Now, let's use this lexicon to calculate the overall sentiment for each of Trump's tweets. Here's the
basic idea:

1. For each tweet, find the sentiment of each word.
2. Calculate the sentiment of each tweet by taking the sum of the sentiments of its words.

First, let's lowercase the text in the tweets since the lexicon is also lowercase. Set the text
column of the trump DF to be the lowercased text of each tweet.

In [39]:

In [40]:

Question 6c
Now, let's get rid of punctuation since it'll cause us to fail to match words. Create a new column
called no_punc in the trump DF to be the lowercased text of each tweet with all punctuation
replaced by a single space. We consider punctuation characters to be any character that isn't a
Unicode word character or a whitespace character. You may want to consult the Python
documentation on regexes for this problem.

(Why don't we simply remove punctuation instead of replacing with a space? See if you can figure
this out by looking at the tweet data.)

assert isinstance(sent, pd.DataFrame)
assert sent.shape == (7517, 1)
assert list(sent.index[5000:5005]) == ['paranoids', 'pardon', 'pardoned', '
assert np.allclose(sent['polarity'].head(), [-1.5, -0.4, -1.5, -0.4, -0.7])

trump["text"] = [str.lower(i) for i in trump["text"]]

assert trump['text'].loc[884740553040175104] == 'working hard to get the ol

In [41]:

In [42]:

Question 6d:
Now, let's convert the tweets into what's called a tidy format (https://cran.r-
project.org/web/packages/tidyr/vignettes/tidy-data.html) to make the sentiments easier to
calculate. Use the no_punc column of trump to create a table called tidy_format . The
index of the table should be the IDs of the tweets, repeated once for every word in the tweet. It has
two columns:

1. num : The location of the word in the tweet. For example, if the tweet was "i love america",
then the location of the word "i" is 0, "love" is 1, and "america" is 2.

2. word : The individual words of each tweet.

The first few rows of our tidy_format table look like:

num word

894661651760377856 0 i

Out[41]: 968621347294318592
senatorwicker of mississippi has been a great supporter and incredible he
lp in getting our massive tax cut bill done and approved also big help o
n cutting regs i am with him in his re election all the way

968620661349470209 texas lc george p bush backed me when it wasn
t the politically correct thing to do and i back him now also ac sid m
iller has been with me from the beginning he is trump s man in texas
also support comptroller glenn hegar and railroad commissioner christi c
raddick

968550893015707649
american consumers are the most confident they ve been since 2000 a st
rong job market is boosting confidence the unemployment rate has stayed
at a 17 year low https t co al7avor7xc

968549117625602054 i want to encourage
all of my many texas friends to vote in the primary for governor greg abb
ott senator ted cruz lt gov dan patrick and attorney general ken pax
ton they are helping me to make america great again vote early or on ma
rch 6th

968468176639004672
it h h t

Save your regex in punct_re
punct_re = r'[^\s\w]'
trump['no_punc'] = [re.sub(punct_re, " ", i, len(i)) for i in trump["text"]
trump['no_punc']

assert isinstance(punct_re, str)
assert re.search(punct_re, 'this') is None
assert re.search(punct_re, 'this is ok') is None
assert re.search(punct_re, 'this is\nok') is None
assert re.search(punct_re, 'this is not ok.') is not None
assert re.search(punct_re, 'this#is#ok') is not None
assert re.search(punct_re, 'this^is ok') is not None
assert trump['no_punc'].loc[800329364986626048] == 'i watched parts of nbc
assert trump['no_punc'].loc[894620077634592769] == 'on purpleheartday i th
If you fail these tests, you accidentally changed the text column
assert trump['text'].loc[884740553040175104] == 'working hard to get the ol

https://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data.html

num word

894661651760377856 1 think

894661651760377856 2 senator

894661651760377856 3 blumenthal

894661651760377856 4 should

Note that you'll get different results depending on when you pulled in the tweets. However,
you can double check that your tweet with ID 894661651760377856 has the same rows as
ours. Our tests don't check whether your table looks exactly like ours.

This will require some rather advanced Pandas hacking, but our solution uses a chain of 5 methods
on the trump DF.

Hint 1: Try looking at the expand argument to pandas' str.split .
Hint 2: Try looking at the stack() method.

In [43]:

Out[43]:
num word

968621347294318592 0 senatorwicker

968621347294318592 1 of

968621347294318592 2 mississippi

968621347294318592 3 has

968621347294318592 4 been

968621347294318592 5 a

968621347294318592 6 great

968621347294318592 7 supporter

968621347294318592 8 and

968621347294318592 9 incredible

968621347294318592 10 help

968621347294318592 11 in

968621347294318592 12 getting

968621347294318592 13 our

968621347294318592 14 massive

968621347294318592 15 tax

968621347294318592 16 cut

968621347294318592 17 bill

968621347294318592 18 done

968621347294318592 19 and

968621347294318592 20 approved

968621347294318592 21 also

968621347294318592 22 big

968621347294318592 23 help

968621347294318592 24 on

968621347294318592 25 cutting

968621347294318592 26 regs

968621347294318592 27 i

968621347294318592 28 am

tidy_format = trump["no_punc"].str.split(expand=True)
tidy_format = pd.DataFrame(tidy_format.stack())
tidy_format = tidy_format.reset_index()
tidy_format = tidy_format.rename(columns={tidy_format.columns[1]: "num", ti
tidy_format = tidy_format.set_index(tidy_format.columns[0])
del tidy_format.index.name
tidy_format

num word

968621347294318592 29 with

...

786310855843512320 14 t

786310855843512320 15 co

786310855843512320 16 hfihperfgz

786310855843512320 17 amp

786310855843512320 18 https

786310855843512320 19 t

786310855843512320 20 co

786310855843512320 21 pygilshrgv

786285509668696065 0 the

786285509668696065 1 people

786285509668696065 2 of

786285509668696065 3 cuba

786285509668696065 4 have

786285509668696065 5 struggled

786285509668696065 6 too

786285509668696065 7 long

786285509668696065 8 will

786285509668696065 9 reverse

786285509668696065 10 obama

786285509668696065 11 s

786285509668696065 12 executive

786285509668696065 13 orders

786285509668696065 14 and

786285509668696065 15 concessions

786285509668696065 16 towards

786285509668696065 17 cuba

786285509668696065 18 until

786285509668696065 19 freedoms

786285509668696065 20 are

786285509668696065 21 restored

145344 rows × 2 columns

In [44]:

Question 6e:
Now that we have this table in the tidy format, it becomes much easier to find the sentiment of
each tweet: we can join the table with the lexicon table.

Add a polarity column to the trump table. The polarity column should contain the sum
of the sentiment polarity of each word in the text of the tweet.

Hint you will need to merge the tidy_format and sent tables and group the final answer.

In [45]:

Out[45]:
time source retweet_count text est_time hour

968621347294318592
2018-
02-27

22:58:19

Twitter
for

iPhone
6298

.@senatorwicker
of mississippi

has been a
great supporter

and incredible
help in getting

our massive tax
cut bill done

and approved.
also big help on

cutting regs. i
am with him in
his re-election

all the way!

2018-02-
27

17:58:19-
05:00

17.971944 2018.15

assert tidy_format.loc[894661651760377856].shape == (27, 2)
assert ' '.join(list(tidy_format.loc[894661651760377856]['word'])) == 'i th

trump.head(1)

In [46]:

Out[46]: 968621347294318592 7.8

968620661349470209 1.8

968550893015707649 5.2

968549117625602054 9.0

968468176639004672 -1.5

968467243192537088 -0.2

968462966864609280 -1.3

968455547094753281 7.0

967847560248426498 4.8

967609114238050304 0.0

967597887545896961 -2.5

967597639293382657 0.0

967564998238142471 2.2

967563946063523840 -1.7

967545724362739712 -7.5

967539664692350977 2.8

967538684789739520 -6.8

967526110249537542 5.3

967508938425069568 8.9

967506350283599874 -7.4

967493467046899712 5.4

967472757025001472 11.1

967389553362423808 2.1

967388904952344577 -1.7

967168890232082433 7.5

967146956094083073 4.8

967084806726127616 7.0

967083810981597185 5.7

967083281974951939 4.9

967023714268319744 2.8

 ...

787425145489072128 -2.0

787359730465329152 -1.8

787355131062943744 3.4

787320961934688257 -1.7

787320326573228032 3.0

787319977711923200 1.1

787267564405653505 -1.6

787266044213723138 1.2

787258211283918848 -4.4

787244543003467776 -2.5

787127225581707265 1.5

787099202291634177 4.3

787025537483046913 -1.0

787012170630455297 2.0

786950598826532864 -1.3

786737820669009921 1.1

786716631644897280 1.2

786710113163812864 1.2

786709861245526017 0.0

merger = tidy_format.merge(sent, how="left", left_on="word", right_index=Tr
merger = merger.sort_index()
merger = merger.fillna(0)
merger = merger.groupby(merger.index)["polarity"].sum()
trump['polarity'] = merger
trump['polarity']

In [47]:

Now we have a measure of the sentiment of each of his tweets! Note that this calculation is rather
basic; you can read over the VADER readme to understand a more robust sentiment analysis.

Now, run the cells below to see the most positive and most negative tweets from Trump in your
dataset:

In [48]:

786700864752914433 -2.1

786691718062235649 7.7

786658827429154816 3.1

786589454991499264 0.0

786589172911964161 1.5

786565208663785476 1.2

786560925113266176 -4.2

786554517680693248 0.0

786340623804751872 1.2

786310855843512320 0.0

786285509668696065 1.2

Name: polarity, Length: 6802, dtype: float64

Most negative tweets:

 horrible and cowardly terrorist attack on innocent and defenseless wor
shipers in egypt. the world cannot tolerate terrorism, we must defeat the
m militarily and discredit the extremist ideology that forms the basis of
their existence!

 "@fiiibuster: @jeffzeleny pathetic - you have no sufficient evidence t
hat donald trump did not suffer from voter fraud, shame! bad reporter.

 democrat jon ossoff would be a disaster in congress. very weak on crim
e and illegal immigration, bad for jobs and wants higher taxes. say no

 nyc terrorist was happy as he asked to hang isis flag in his hospital
room. he killed 8 people, badly injured 12. should get death penalty!

 yet another terrorist attack today in israel -- a father, shot at by a
palestinian terrorist, was killed while:

https://t.co/cv1hzkvbit (https://t.co/cv1hzkvbit)

assert np.allclose(trump.loc[744701872456536064, 'polarity'], 8.4)
assert np.allclose(trump.loc[745304731346702336, 'polarity'], 2.5)
assert np.allclose(trump.loc[744519497764184064, 'polarity'], 1.7)
assert np.allclose(trump.loc[894661651760377856, 'polarity'], 0.2)
assert np.allclose(trump.loc[894620077634592769, 'polarity'], 5.4)
If you fail this test, you dropped tweets with 0 polarity
assert np.allclose(trump.loc[744355251365511169, 'polarity'], 0.0)

print('Most negative tweets:')
for t in trump.sort_values('polarity').head()['text']:
 print('\n ', t)

https://t.co/cv1hzkvbit

In [49]:

Question 6g
Plot the distribution of tweet sentiments broken down by whether the text of the tweet contains
nyt or fox . Then in the box below comment on what we observe?

Most positive tweets:

 thank you to linda bean of l.l.bean for your great support and courag
e. people will support you even more now. buy l.l.bean. @lbperfectmaine

 it was my great honor to celebrate the opening of two extraordinary mu
seums-the mississippi state history museum & the mississippi civil ri
ghts museum. we pay solemn tribute to our heroes of the past & dedica
te ourselves to building a future of freedom, equality, justice & pea
ce. https://t.co/5akgvpv8aa (https://t.co/5akgvpv8aa)

 rt @ivankatrump: 2016 has been one of the most eventful and exciting y
ears of my life. i wish you peace, joy, love and laughter. happy new…

 today, it was my great honor to sign a new executive order to ensure v
eterans have the resources they need as they transition back to civilian
 life. we must ensure that our heroes are given the care and support they
so richly deserve! https://t.co/0mdp9ddias (https://t.co/0mdp9ddias) http
s://t.co/lp2a8kcbap (https://t.co/lp2a8kcbap)

 it was my great honor to welcome mayor’s from across america to the w
h. my administration will always support local government - and listen to
the leaders who know their communities best. together, we will usher in a
bold new era of peace and prosperity! https://t.co/dmyectnk0a (https://t.
co/dmyectnk0a) https://t.co/rsv7v7r0dt (https://t.co/rsv7v7r0dt)

print('Most positive tweets:')
for t in trump.sort_values('polarity', ascending=False).head()['text']:
 print('\n ', t)

https://t.co/5akgvpv8aa
https://t.co/0mdp9ddias
https://t.co/lp2a8kcbap
https://t.co/dmyectnk0a
https://t.co/rsv7v7r0dt

In [50]:

Comment on what you observe:

Generally, Trump refers to "nyt" negatively, while he refers to "fox" positively. His tweets about fox
seem to be a bit sporadic, as the values are more scattered throughout the plot. For "nyt", the
distribution is more concentrated (on the negative side) and if there is positive sentiment, it is not
too high.

Question 7: Engagement

Question 7a
Which of Trump's tweets had the most retweets? Were there certain words that often led to more
retweets?

We can find this out by using our tidy_format DataFrame. For each word in the
tidy_format DF, find out the number of retweets that its tweet got. Filter out words that didn't

appear in at least 25 tweets, find out the median number of retweets each word got, and save the
top 20 most retweeted words into a DataFrame called top_20 . Your top_20 table should have
this format:

retweet_count

word

fake 22963.0

news 20463.0

ds100 20432.0

great 20159.0

nyt = [trump.loc[i, "polarity"] for i in trump.index if trump.loc[i, "text"
fox = [trump.loc[i, "polarity"] for i in trump.index if trump.loc[i, "text"
sns.distplot(nyt, label="nyt")
sns.distplot(fox, label="fox")
plt.legend();

retweet_count

word

class 20121.0

In [51]:

Out[51]:
retweet_count

word

nfl 24625.0

daca 24224.0

anthem 23820.0

fbi 23810.0

russia 23511.0

fake 23153.5

finally 23122.0

schumer 22746.0

billion 22007.0

iran 21855.0

russian 21744.0

collusion 21352.0

god 20581.0

news 20307.0

safety 20223.5

unemployment 20167.0

taken 19920.0

comey 19873.0

democrats 19850.5

months 19820.0

retweet = [trump.loc[i, "retweet_count"] for i in tidy_format.index]
tidy_format["retweet_count"] = retweet
words = tidy_format.groupby("word").count()
more_than_25_retweets = words[words["num"] > 25]
filtered = tidy_format[tidy_format["word"].isin(more_than_25_retweets.index
filtered = filtered.groupby("word")[["retweet_count"]].median()
filtered = filtered.sort_values("retweet_count", ascending=False)
top_20 = filtered[:20]
top_20

In [52]:

Here's a bar chart of your results:

In [53]:

Question 7b
The phrase "fake news" is apparently really popular! We can conclude that Trump's tweets
containing "fake" and/or "news" result in the most retweets relative to words his other tweets. Or
can we?

Consider each of the statements about possible confounding factors below. State whether each
statement is true or false and explain. If the statement is true, state whether the confounding factor
could have made "fake" and/or "news" higher on our list than they should be.

1. We didn't restrict our word list to nouns, so we have unhelpful words like "let" and "any" in our
result.

2. We didn't remove hashtags in our text, so we have duplicate words (eg. #great and great).
3. We didn't account for the fact that Trump's follower count has increased over time.

NOTE This Test is kind of iffy (very variable) - needs review before p
​
Although it can't be guaranteed, it's very likely that the top 7 words wi
in the top 20 words in the next month.
assert 'daca' in top_20.index
assert 'nfl' in top_20.index
assert 'anthem' in top_20.index
assert 'fbi' in top_20.index
assert 'russia' in top_20.index
​

top_20['retweet_count'].sort_values().plot.barh(figsize=(10, 8));

1. True, but is not a confounding factor because these are neutral words and we are looking at
their individual median, so their values won't have any affect on words like "fake" and their
respective data.

2. False. There are not any duplicates.
3. True. If the retweets are increasing over time, there could be a disproportionate effect of on the

words' median. The words used more recently would raise the median.

Question 8
Using the trump tweets construct an interesting plot describing a property of the data and
discuss what you found below.

Ideas:

1. How has the sentiment changed with length of the tweets?
2. Does sentiment affect retweet count?
3. Are retweets more negative than regular tweets?
4. Are there any spikes in the number of retweets and do the correspond to world events?
5. Bonus: How many Russian twitter bots follow Trump?

You can look at other data sources and even tweets.

Plot:

In [54]:

Out[54]: <matplotlib.legend.Legend at 0x7fefe6fa3630>

happy = trump[trump["polarity"] >= 5]["year"]
angry = trump[trump["polarity"] <= -5]["year"]
sns.distplot(happy, label="Happy Trump", hist=False)
sns.distplot(angry, label="Angry Trump", hist=False)
plt.ylabel("fraction")
plt.legend()

Discussion:

Trump seemed to be very angry during his presidential campaign, tweeting more tweets with a
polarity below -5. Right after he took office, this trend shifts and Trump tweets more positively
(tweets with a polarity greater than 5). We are analyzing his personal @realdonaldtrump account,
but he also posts on the @potus account, which he got control of once he took office. It is possible
that he posts more positive tweets on his personal account now, altough many other factors could
have contributed to his rise in positivity.

Submission
Congrats, you just finished Project 1!

